КИСЛОРОД

Лекция, прочитанная в Центральной школе парторганизаторов ЦК ВК,П(б)

1944

Я думаю, что вы оцените ту трудность, которая стояла передо мной при выборе темы моего доклада. Я знаю, что вас учат общественным наукам, экономике, истории. Но вас не учат технике и ее основе — физике. Вполне понятно, что вы даже подзабыли ту физику, которую учили в средней школе. Поэтому я выбрал для своей сегодняшней лекции не научную тему, а более общую — о кислороде и предполагаю вам рассказать о том, как в лаборатории у ученых родилась одна интересная научная проблема и как постепенно из небольших лабораторных опытов она перешла в технику и промышленность и как, наконец, начала оказывать большое влияние на экономику всего народного хозяйства. На этом примере мне хотелось наглядно показать, как наука влияет на рост культуры страны.

Иллюстрацией аналогичного процесса может служить следующий уже хорошо известный пример, когда маленькое, ничтожное на первый взгляд наблюдение ученого привело к большим практическим последствиям. Не так уж давно, немногим больше столетия прошло с того дня, когда итальянский врач Гальвани, подвешивая к металлическим перилам своего балкона лапки лягушки, над которой он экспериментировал, заметил, как мышцы лягушачьей лапки пришли в судорожное движение без всякого постороннего воздействия электризации, но просто от прикосновения к мышцам двух разных металлов.

Подобное сокращение, но под действием электрических разрядов, было уже известно и неоднократно наблюдалось. Более проницательный, чем Гальвани, Вольта первым понял, что итальянский медик открыл новый источник электричества — электрохимический элемент. Правильно истолковав наблюдения Гальвани и продолжая его работы, Вольта в 1799 г. создал свой знаменитый «вольтов столб», состоящий из ряда медных и цинковых дисков, разделенных пропитанными кислотой кусками фланели, и дающий уже значительную электродвижущую силу. Таким образом был создан источник постоянного электрического тока, что дало возможность изучать его физические свойства.

Рядом ученых только за один XIX в. были открыты все основные электромагнитные явления, вызываемые электрическим током, и создана их теория. Как вы, вероятно, знаете, это открыло путь к созданию мощных источников электрической энергии и ее широкому использованию в технике и народном хозяйстве.

Сейчас для всех ясно, что мы не можем мыслить нашу жизнь без использования электрического тока. С исторической точки зрения современная электротехника молода, она в основном развилась за одно столетие, при ее зарождении присутствовали наши деды.

История использования кислорода, о которой я буду рассказывать, происходит на наших глазах и еще не завершена. Здесь тоже наглядно видно, как научное открытие, родившееся в лаборатории, начинает оказывать все возрастающее влияние в технике и в народном хозяйстве. Я выбрал эту проблему как тему для доклада, так как сам активно принимал участие во внедрении кислорода в промышленность.

Газ кислород как составная часть воздуха был открыт давно. Во второй половине XVIII в. почти одновременно в Швеции — Шееле, в Англии — Пристли и во Франции — Лавуазье установили, что кислород поддерживает горение, и назвали его первоначально «огненным» или «жизненным» воздухом. Впоследствии Лавуазье изменил его название на «кислород» в знак того, что он образует кислоты со многими горючими веществами (фосфорную кислоту с фосфором, углекислоту с углем т. д.). Вскоре было выяснено в больших подробностях значение кислорода для жизни человека и стало известно, что когда человек заболевает и ему трудно дышать, ему помогает кислород.

Во времена Лавуазье химики добывали кислород из перекиси марганца, которая находится в природе. Несколько позднее кислород добывали из содержащих его в большом количестве кислот и солей. Пристли и Шееле получали кислород для лечебных целей из хлорноватокалиевой соли, которой было присвоено название по имени открывшего ее французского химика Бертолле — «бертоллетова соль».

Эта соль, сходная по физическим свойствам с обыкновенной поваренной солью и имеющая вид бесцветных прозрачных пластин, при нагревании плавится и, расплавившись, начинает разлагаться, выделяя кислород. Сто граммов бертоллетовой соли дают около 29 литров кислорода. Таким образом полученным кислородом наполняют подушки, с помощью которых поддерживают дыхание тяжелобольных. Это было давно. Получаемый с трудом и в небольших количествах кислород не находил широкого применения.

Развитие физики показало, что к получению кислорода следует подойти другим путем.

Самым обильным источником кислорода, несомненно, должен быть воздух, но долгое время он был недоступным человечеству, пока ученые не нашли способ повысить его естественную концентрацию (21 %). История того, как это произошло, началась примерно 70 лет тому назад, когда швейцарскому физику Пикте и одновременно с ним французскому физику Кальете удалось ожижить воздух. К тому времени многие газы уже удавалось ожижать, но были и такие, которые еще Фарадей назвал «постоянными», потому что ошибочно считалось, что их вообще нельзя перевести в жидкое состояние. К числу этих «постоянных» газов относился и воздух, поскольку даже при сильном сжатии он не ожижался.

Тогда было выяснено, что для ожижения газа нужно не только достаточно высокое давление, но и достаточно низкая температура, названная критической. Как мы теперь знаем, эта температура для воздуха — 141°С при давлении в 32 атм. После ряда попыток найти метод для получения таких низких температур это удалось, наконец, Пикте. В семидесятых годах прошлого века он получил жидкий воздух и наполнил им небольшой сосуд. Это считалось тогда большим научным открытием; Пикте был избран почетным членом разных учных обществ, получил медаль и пр. Основной помехой при исследованиях было то, что жидкий воздух в то время никак не удавалось сохранить в жидком состоянии. Как только его наливали в сосуд, он быстро испарялся. Никому и в голову не приходило, что эта жидкость, которую нельзя было сохранять, может иметь промышленное значение. Жидкий воздух оставался курьезной новинкой, получение которой было доступно только одной-двум хорошо оборудованным лабараториям в мире.

Так продолжалось лет двадцать, пока не было сделано другое открытие, которое сразу изменило положение. Английский ученый Дьюар на основании теоретических соображений пришел к выводу, что вакуум, т. е, пустоту, можно применить для тепловой изоляции.

Теплота передается движением молекул при их столкновении друг с другом. Если молекул мало, то передача тепла затрудняется. Дьюар показал, что, если сделать сосуд с полой оболочкой и выкачать из нее воздух и если в такой сосуд положить, например, лед, он долго нe будет таять, так как приток тепла через стенки будет очень мал. Такой сосуд по имени Дьюара часто называюот «дьюаровским». Эти сосуды теперь вошли в обиход, ими широко пользуются для хранения пищи при высокой или низкой температуре. В обиходе их называют «термосами». В то время установление принципа, на котором основан термос, было большим научным открытием. Благодаря появлению дьюаровских сосудов стало возможным сохранять жидкий воздух, что позволило более подробно изучать его физические свойства.

Примерно в девяностых годах прошлого века англичанин Бейли и немец Линде, изучая жидкий воздух как смесь двух жидких газов — азота и кислорода ,- одновременно нашли, что жидкий воздух, когда частично испаряется, обогащается кислородом, и это объясняется тем, что жидкий азот кипит при несколько более низкой температуре, чем жидкий кислород. Исследования показали, что при атмосферном давлении разница в температуре кипения этих двух жидкостей довольно значительна и составляет около 13°С. Линде первым понял, что это явление открывает возможность дешевого получения кислорода и может иметь большое практическое значение. Это произошло спустя 25 лет после получения жидкого воздуха.

С незапамятных времен человечеством были использованы процессы разгонки смесей жидкостей, основанные на разнице температур кипения компонентов. Подобный процесс, например, находит себе применение для получения спирта, даже используется в деревне при перегонке самогона. Как известно, этот процесс разгонки также широко используется в нефтяной промышленности.

Линде пришла мысль применить способ разгонки к жидкому воздуху, чтобы отогнать более легко кипящий азот от кислорода. Таким путем в первых же опытах он легко получил довольно чистый кислород. Это открывало возможность получения кислорода не только гораздо более дешевым путем, чем прежний, химический, который использовался для наполнения кислородных подушек для тяжелобольных, но и в больших объемах, определяемых уже не десятками литров, а сотнями и тысячами кубометров. А если так, то, значит, с помощью кислорода можно интенсифицировать не только процесс человеческого дыхания, но и процессы большего масштаба, как, например, горение.

Естественно, возникла мысль, что если заставить горючий газ, например ацетилен, гореть в присутствии одного кислорода, без азота, который не принимает участия в реакции горения и является вредной примесью, уносящей тепло, то можно получить значительно более горячее пламя. Опыт показал, что таким высокотемпературным пламенем можно локально плавить любой металл, что дало возможность сплавлять два куска металла без помощи какого бы то ни было легкоплавкого припоя, например, сваривать железо с железом. Так появилась и стала успешно применяться автогенная сварка.

Вскоре после этого был найден и способ автогенной резки металлов. По всей вероятности, вам известно, каких масштабов в промышленности теперь достигли автогенные методы обработки металлов: ни самолет, ни морское судно не могут быть построены без автогенной сварки. И стало это возможным только благодаря тому, что открылась возможность дешево получать кислород, добывая его в больших масштабах непосредственно из воздуха.

Методы разделения жидкого воздуха, впервые предложенные Линде, уже разрабатываются лет пятьдесят. Все время масштабы кислородной промышленности увеличиваются. Например, сейчас в Америке ежегодно потребляется 250 миллионов кубометров кислорода. Это после тех десятков и сотен литров, которые еще в начале века с трудом добывались из бертоллетовой соли.

Естественно, стал возникать следующий вопрос. Мы с пользой интенсифицируем горение, получаем горячее пламя за счет чистого кислорода, подаваемого в рожок автогенной горелки. Но поскольку окислительных процессов в природе очень много, не будет ли полезным их также интенсифицировать?

Почти вся энергетика в природе во всем многообразии ее форм так или иначе связана с окислительными процессами. Дыхание сводится к окислению. За счет получаемой при этом процессе энергии мы работаем и двигаемся, за счет нее поддерживается теплота нашего тела. Так происходит и со всем живым, вплоть до большинства простейших бактерий. Но этого мало: 90 % нашей техники основано на использовании кислорода. Сжигание бензиновых паров в цилиндрах двигателей внутреннего сгорания, сжигание угля в топках котлов теплоцентралей, в жерле доменной печи, сгорание серного колчедана и еще множество других важнейших технических процессов основано на окислении. Представьте себе, что вслед за интенсификацией дыхания, вслед за интенсификацией пламени горелки сварочного аппарата мы начнем интенсифицировать все процессы в технике, в которых применяется кислород. Какую выгоду это может нам дать для народного хозяйства?

Для ответа на этот вопрос надо провести экономический расчет, для которого нужно знать, во-первых, что в каждом отдельном случае дает интенсификация кислородом, и, во-вторых, будут ли при этом оправданы расходы на получение кислорода.

Таким образом, перед нами возникает вопрос: как наиболее дешево можно получать кислород? Наука может на это ответить. Поскольку основная стоимость кислорода определяется энергетическими затратами, то нужно определить, какую минимальную мощность, скажем, какое количество киловатт, необходимо затратить для получения из воздуха 1 м³ кислорода в час. Оказывается, что эта величина очень невелика — это составляет 0,08 кВт-ч. Можно доказать, что меньше этого нельзя затратить, получая кислород из воздуха. Сколько же мы тратим на самом деле? В тех установках, котог рые сейчас существуют, мы затрачиваем мощность в 15 раз большую, чем теоретически минимальная. Это происходит потому, что существующие методы получения кислорода еще далеко не совершенны. Можем ли мы их сделать более совершенными? Да, можем.

Я не имею возможности здесь подробно говорить об источниках потерь при получении кислорода. Замечу лишь, что, когда инженеры знают величину потерь и их причины, они обычно находят пути с ними бороться. Определив стоимость получения кислорода, мы можем определить рентабельность применения кислорода в различных областях техники в данное время. Имея эти данные, мы можем предсказать, что в различных областях нашей промышленности произойдет, когда там станут применять кислород.

Ввиду важности этой проблемы для развития нашей промышленности создано при СНК СССР специальное учреждение — Главкислород, которым я руковожу. При Главкислороде есть Технический совет, куда привлечены видные специалисты тех отраслей промышленности, где предполагается в первую очередь применить кислород. Руководителем одного из отделов Главка по внедрению кислорода в металлургию является академик И. П. Бардин. Вы все хорошо знаете, что это очень знающий и весьма опытный инженер. В «Бюллетене» Главкислорода помещена его статья на тему применения кислорода в металлургии. Поскольку это область, в которой предполагается начать осваивать применение кислорода, то я остановлюсь на ней более подробно и приведу ряд данных из статьи Бардина.

Например, что дает перевод домны на кислородное дутье? Две домны уже работали на кислороде: одна — в Черноречье, другая около Днепропетровска на ДЗМО. Последняя — это крупная домна, она проработала уже 5-6 месяцев. Но, к сожалению, на самом интересном месте опыты с ней были прерваны из-за эвакуации, связанной с войной. Но уже полученные результаты достаточно интересны. И. П. Бардин с уверенностью приходит к выводу, что, если добавлять достаточно кислорода в доменное дутье (пока еще не оказалось возможным перейти на чисто кислородное дутье), за одно и то же время домна станет давать в 3,5-4 раза больше чугуна. Это происходит благодаря тому, что процесс восстановления руды в домне в присутствии кислорода интенсифицируется и поэтому проходит гораздо скорее.

Экспериментаторы, проводившие эти опыты, показали, что обогащение воздуха на 1 % кислородом поднимает производительность домны на 10 %. В дальнейшем полученный чугун уже в конверторах или мартенах можно перевести в сталь, тоже применяя кислород. При этом процесс не только значительно интенсифицируется, но в отсутствие азота сталь получается лучшего качества. В будущем это тоже сулит большую экономию.

Положим, говорит Бардин, что наша металлургия будет доведена до уровня американской, т. е. до выплавки 90-100 млн. т стали в год. Если мы это сделаем, то экономия по капиталовложениям при условии перевода металлургии на кислород составит 10 млрд. рублей. Экономия в стоимости чугуна будет примерно 16-17 %. При этом, конечно, учитывается, что количество перерабатываемой руды возрастет пропорционально количеству выпускаемой продукции, так как при этом процесс только интенсифицируется, но не изменяется.

Но здесь следует учесть и другой факт, который вас, как экономистов, может заинтересовать. Оказывается, что при интенсификации производства не все решается одной стоимостью продукции, но следует учитывать и трудозатраты.

Приведу вам такой упрощенный пример. Предположим, нам нужно выработать 1 т какого-то продукта. Чтобы его произвести, двум рабочим платят по 300 рублей каждому. Таким образом, тонна продукта обходится вам в 600 рублей. Но вот мы механизировали и интенсифицировали процесс производства. Теперь, чтобы произвести то же количество продукта, нужно участие уже не двух, а одного рабочего, но более квалифицированного, чем прежние. Он затратит на это столько же времени, сколько каждый из прежних двух рабочих. Но ему придется платить уже 700 рублей, т. е. больше, чем прежним двум вместе взятым, и поэтому продукт будет стоить на 100 рублей дороже, хотя человеко-часов затрачено в два раза меньше. Спрашивается: выгодно это или нет?

В масштабе всей страны это выгодно. Рабочему, который освободится от участия в этом процессе, это даст возможность начать учиться. Образование человека стоит меньше по сравнению с тем, что приносит государству его более квалифицированный труд. Затраты на образование составляют незначительную часть стоимости продукта, получаемого от труда человека. Поэтому судить о выгодности или невыгодности интенсификации производственного процесса нужно не только по рублям, но также по трудочасам, учитывая рост производительности труда и экономию в рабочей силе.

Кроме того, очевидно, что если рабочий с менее квалифицированной работы переходит на более квалифицированную работу, то в стране поднимается уровень квалификации трудящихся и повышается их жизненный уровень. Поэтому сейчас, когда производят предварительные расчеты рентабельности интенсификации кислородом различных производств, даже в том случае, когда это оказывается убыточным в копейках, но, подымая производительность труда, дает выигрыш в затрате рабочей силы, освобождая из производства наименее квалифицированную часть рабочих, ее в общем следует оценить положительно. Как подсчитал Бардин, в металлургии применение кислорода обещает дать 40 % экономии в рабочей силе.

Я привел пример с черной металлургией, потому что он у нас наиболее хорошо изучен и в этой области уже имеются надежные экспериментальные данные, на которых основано все, только что мною сказанное. Расчеты показывают, что с этой точки зрения применение кислорода и в ряде других областей народного хозяйства оказывается весьма эффективным.

Я мог бы вам рассказать также о применении кислорода в азотно-туковой промышленности, при получении целлюлозы, для извлечения золота из руд, для изготовления дешевых взрывчатых веществ, так называемых оксиликвитов и т. д. Подробно об этих вопросах можно почитать в «Бюллетене» Главкислорода. Но и этого перечня достаточно, чтобы оценить масштабы тех производств в промышленности, которые возможны с интенсификацией кислородом технологических процессов.

В последние годы, как инженер и физик, я со своими сотрудниками в Институте физических проблем занимался задачей разработки более совершенных методов получения кислорода. Я вам уже говорил, что в существующих установках для получения кислорода затрачивается во много раз больше энергии, чем это предельно возможно. Поэтому перед учеными стоит вопрос: как усовершенствовать процесс извлечения кислорода из воздуха так, чтобы, затрачивая меньше мощности, удешевить кислород?

Но это еще не вся проблема. Нам нужно получать не только дешевый кислород, но надо получать еще очень много кислорода. В данном случае это не так просто — оказывается, здесь количество переходит в качество. Первая же большая домна, переведенная на кислород, будет потреблять столько кислорода, сколько вся наша автогенная промышленность во всем Союзе.

Если мы станем осуществлять необходимое для этих масштабов производство кислорода существующими методами, то возникает принципиальное затруднение. В технике, когда растут мощности, есть одна особенность, которую инженеры больше чувствуют, чем осознают, хотя ее можно достаточно строго обосновать теоретически.

Поясню ее на примере: если увеличивать размеры какой-либо поршневой машины, например двигателя, рассчитывая получить от нее большую мощность, то окажется, что после определенного размера вес ее на единицу мощности будет не уменьшаться, а увеличиваться. Так, если паровая машина мощностью в 100 лошадиных сил (я беру совершенно условные цифры для характеристики относительных пропорций) весит 1 т, то машина мощностью в десять раз большей — в 1000 лошадиных сил — будет весить не 10 т, а больше. С увеличением габаритов поршневой машины после некоторого размера мощность ее на единицу веса убывает. Поэтому на практике, если мы хотим построить более мощную поршневую машину, оказывается выгодным не увеличивать размеры цилиндров, а увеличивать их число.

Это можно наблюдать на примере современного авиационного моторостроения. Подымая мощность моторов, сейчас, из соображений веса, приходится увеличивать не размер цилиндров, а их число: оно у нас достигает 24, а новейшие американские моторы имеют до 48 цилиндров*). Вес мотора — это основная трудность при увеличении размеров аэропланов.

*) Эта лекция была прочитана до того, как авиация перешла на турбовинтовые и турбореактивные двигатели. С поршневым двигателем увеличение размеров аэропланов в то время уже становилось невозможным.

Если бы основывать получение кислорода в больших масштабах производства на использовании для получения холода поршневых детандеров и компрессоров, то мы также скоро подошли бы к пределу допустимых размеров кислородных установок и дальнейшее увеличение производства кислорода пришлось бы осуществлять увеличением числа поршневых машин, но не их размеров.

Здесь имеет место полная аналогия с тем, что происходит при росте мощности теплоэлектроцентралей. Если бы сейчас современные мощные ТЭЦ стали оборудовать уаттовскими поршневыми машинами, которые изредка еще встречаются на старых волжских пароходах или на маленьких электростанциях, то эти машины должны были бы приобрести такие размеры, которые можно считать неосуществимыми. Как хорошо известно, решение проблемы увеличения мощности осуществляется паровой турбиной, изобретенной Лавалем и Парсонсом, которая замечательна тем, что может дать на единицу веса во много раз большую мощность, чем поршневая паровая машина. Поэтому теперь крупные электростанции строят только на турбинах.

Первоначально ожижение воздуха производилось методом, в котором использовался так называемый эффект Джоуля — Томсона. Это явление заключается в том, что при свободном расширении газа он охлаждается тем больше, чем выше давление сжатого газа. Обычно оно было около 200 атм. В дальнейшем во Франции Клод, а в Германии Гейланд охлаждение производили тем, что сжатый компрессором воздух заставляли расширяться в специальной поршневой машине, называемой детандером, которая действует весьма похоже на паровую. Как известно, паровая машина работает за счет расширения горячего пара, который, после того как совершит работу, покидает машину в значительно более холодном состоянии. Сходство заключается в том, что сжатый воздух при расширении также будет производить работу и охлаждаться. Этим и пользуются в холодильной поршневой машине, которую называют детандером. Сжатый воздух, поступив в ее цилиндр, расширяясь, производит работу и охлаждается. Расчеты показали, что, переходя к получению жидкого воздуха в больших масштабах, чтобы из него разгонкой отделять кислород, следует, как и при получении больших мощностей, отказаться от поршневых компрессоров и детандеров и перейти к турбинам.

Возможность применения холодильных турбин была высказана учеными еще давно. По-видимому, первым был известный английский физик Рэлей. Еще 40 лет тому назад он предложил применять турбину при ожижении воздуха. Обоснование этого предложения было несколько иное, не связанное с необходимостью ожижать воздух в больших масштабах. Оно было вызвано трудностями смазки поршневых детандеров. При низких температурах все смазочные жидкости замерзают. Турбина же при работе не требует смазки. С тех пор был сделан ряд попыток применить турбины как детандеры, но добиться значительного успеха не удалось.

Тут мне придется рассказать и о наших работах в этой области, поскольку как раз в нашем институте, применяя в качестве детандера турбину, удалось впервые получить жидкий воздух и при этом с достаточно хорошими показателями. Та новая идея, которой мы руководствовались, настолько проста, что даже непонятно, почему до сих пор на нее не обратили внимания.

Общий ход рассуждений (конечно, схематизируя) до наших работ был следующим: для того чтобы получать холод, строили поршневые детандеры и, чтобы поднять их к.п.д., прибегали к высоким давлениям, точно также как в энергетике стремились пользоваться поршневыми машинами высокого давления пара. Потом, для получения еще больших мощностей, в энергетике стали поршневые машины заменять турбинами. Следовательно, для получения жидкого воздуха в больших количествах нужно сделать то же самое. И, следуя этой аналогии, инженеры стали применять для холодильной техники в качестве детандеров общепринятые типы паровых турбин. На практике оказалось, что холод они, конечно, давали, но с плохим к.п.д.

Этот случай лишний раз показывает нам, как осторожно надо пользоваться аналогией. Инженеры, загипнотизированные аналогией тепловых процессов в холодильных и паровых машинах, просмотрели очень важный фактор. Они упустили то, что воздух, благодаря своей большой сжимаемости, при низких температурах становится настолько плотным, что по своим физическим свойствам гораздо больше напоминает воду, чем пар.

Это приводит к тому, что холодильные турбины надо строить не по образцу паровых, а по образцу водяных, т. е. применяя несколько измененные, хорошо всем известные реактивные турбины типа Жонваля. Когда я обратил внимание конструкторов наших кислородных установок, что они применяют не тот тип турбины, мое замечание не было серьезно воспринято. Мне ответили примерно так: все за границей идут по пути паровых турбин; то, что вы предлагаете, идет в противоречие с тем, что делают там фирмы. Это отвлеченная теория ученого.

Тогда было решено сконструировать и построить у нас в институте холодильную турбину, подобную гидротурбине, и проверить на опыте, будет ли она иметь такой же высокий к.п.д., какой характерен для водяных турбин. Эти работы заняли 2-3 года и окончились успешно. Теперь наша турбина уже получила общее признание как у нас, так и за рубежом и была в конечном итоге отмечена правительством премией.

Этот пример является хорошей иллюстрацией того, как люди не обращают внимания на совершенно очевидное — при понижении температуры воздух приобретает новое качество, присущее жидкости, хотя и остается при этом газообразным телом. Загипнотизированные общепринятым решением проблемы, конструкторы с трудом воспринимают новое, даже когда решение проблемы является более простым.

Когда при конструировании турбины эта особенность воздуха при низких температурах была учтена, открылась возможность получения кислорода в больших масштабах. В военное время не рекомендуется широко распространять цифровые данные. Но я могу вам сказать, что есть завод, который успешно работает на наших турбинах уже в продолжение нескольких тысяч часов. Третья часть всего кислорода в Москве делается сейчас таким путем.

Это направление в получении кислорода сейчас расширяется. Но в жизни при развитии всего нового неизбежны трудности. Хотя сама по себе идея и проста, но при ее выполнении встречается ряд новых технических трудностей. Например, при осуществлении высокооборотной турбины, работающей в плотной среде холодного газа, возникает неустойчивость ротора. Пришлось разработать новый тип стабилизаторов.

Приходится преодолевать и трудности психологической природы. Как всегда в отношении к новому, люди тяжелы на подъем, и в нашей промышленности немало консерватизма. Преодолев эти обычные жизненные явления, мы начинаем в области техники глубокого холода и применения кислорода опережать Запад. И здесь начинает выявляться одна очень интересная особенность, связанная с решением в народном хозяйстве такого рода проблем.

Оказывается, что в некотором отношении комплексные нововведения большого масштаба у нас в стране проходят легче, чем в капиталистических странах. Какое-нибудь маленькое изобретение у нас часто бывает продвинуть в жизнь труднее, но большое новое направление в технике, которое влечет за собой крупный сдвиг в ряде областей промышленности, у нас оказывается осуществить легче. Причина этого, по-видимому, в следующем. Чтобы быть конкретным, разберу пример, близкий к действительности.

Предположим, что для осуществления большого нововведения нужно участие двух-трех отраслей промышленности. Например, использование горения отходящих газов мартеновского производства при использовании кислорода обещает быть рентабельным для энергетическоро хозяйства. У нас в этом заинтересованы три наркомата: Наркомат электростанций, который может воспользоваться отходящим газом для теплоэлектроцентралей, Наркомат черной металлургии, который подымает производительность мартеновских печей при переводе плавки на кислород, и Главкислород, который должен обеспечить мартены кислородом. Все три наркомата являются органами единого социалистического хозяйства, в то время как при капиталистическом хозяйстве эти области промышленности обычно принадлежат независимым друг от друга в финансовом отношении фирмам. Одна из них может получить от этой комбинации большую прибыль, другая меньшую, а третья может даже понести убыток.

Хотя в сумме народное хозяйство страны выиграет, но сочетать интересы трех частных предпринимателей оказывается делом сложным в юридическом и финансовом отношении, в то время как у нас, когда расчет основывается на общегосударственной выгоде, одно постановление правительства является в равной мере обязательным для всех трех наркоматов, и можно просто обеспечить успешное развитие такого рода комплексных технических проблем.

Таких примеров можно привести много. Мы имеем еще одно огромное преимущество в развитии нового в комплексном хозяйстве, которое мы пока еще плохо используем. Нетрудно видеть, что мы располагаем возможностью, не боясь риска, ставить опыты в технике в очень больших масштабах. А в новом деле нельзя избежать риска. Никогда ничто новое не делается наверняка, поскольку всегда могут появиться трудности, которые нельзя было заранее предвидеть. Если в масштабе всего государства открывается перспектива миллиардной экономии, то риск в несколько десятков миллионов, очевидно, будет оправдан и не разорит государство. В капиталистической стране даже очень крупная фирма не может позволить себе рисковать такой значительной суммой и на большой эксперимент не дерзнет. Как известно, пока главное, что нас тормозит, — это консерватизм и привычка к рутине отдельных бюрократических работников.

Делая этот доклад, я имел в виду, что вы — ответственные партийные работники, ведущие общественные деятели, пропагандисты, поэтому должны быть главными борцами с консерватизмом, с косностью наших работников хозяйственного аппарата. Я надеюсь, что, когда вы разъедетесь по стране, каждый из вас будет вспоминать мой доклад и будет бороться за все новое и прогрессивное в нашей социалистической стране.

На следующую страницу

На предыдущую страницу

Реклама
Решетки высокого качества: сварные решетки на окна. Сварные решетки - Скидки. | кружевной пеньюар | лента шторная спб | Бухгалтерский учет курс г Москва. Бухгалтерские курсы в Москве цена. | Игровые палатки-домики - Мушки рыболовные купить.

Rambler's Top100 Rambler's Top100 Сайт в каталоге Апорт Яндекс цитирования

На самую главную страницу сайта Библиотека избранного
П. Л. Капица. ЭКСПЕРИМЕНТ. ТЕОРИЯ. ПРАКТИКА. { см. Содержание сборника }